Standardize metadata on-the-fly#

This use cases runs on a LaminDB instance with populated CellType and Pathway registries. Make sure you run the GO Ontology notebook before executing this use case.

Here, we demonstrate how to standardize the metadata on-the-fly during cell type annotation and pathway enrichment analysis using these two registries.

For more information, see:

!lamin load use-cases-registries
πŸ’‘ connected lamindb: testuser1/use-cases-registries
import lamindb as ln
import bionty as bt
from lamin_usecases import datasets as ds
import scanpy as sc
import matplotlib.pyplot as plt
import celltypist
import gseapy as gp
πŸ’‘ connected lamindb: testuser1/use-cases-registries
sc.settings.set_figure_params(dpi=50, facecolor="white")
ln.settings.transform.stem_uid = "hsPU1OENv0LS"
ln.settings.transform.version = "0"
ln.track()
πŸ’‘ notebook imports: bionty==0.42.7 celltypist==1.6.2 gseapy==1.1.2 lamin_usecases==0.0.1 lamindb==0.69.9 matplotlib==3.8.4 scanpy==1.10.1
πŸ’‘ saved: Transform(uid='hsPU1OENv0LS6K79', name='Standardize metadata on-the-fly', key='analysis-registries', version='0', type='notebook', updated_at=2024-04-10 18:52:48 UTC, created_by_id=1)
πŸ’‘ saved: Run(uid='cxyKBkXn8kOnYoJJwiwa', transform_id=1, created_by_id=1)

An interferon-beta treated dataset#

A small peripheral blood mononuclear cell dataset that is split into control and stimulated groups. The stimulated group was treated with interferon beta.

Let’s load the dataset and perform some preprocessing:

adata = ds.anndata_seurat_ifnb(preprocess=False, populate_registries=True)
adata


AnnData object with n_obs Γ— n_vars = 13999 Γ— 9943
    obs: 'stim'
    var: 'symbol'
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
sc.pp.pca(adata, n_comps=20)
sc.pp.neighbors(adata, n_pcs=10)
sc.tl.umap(adata)

Analysis: cell type annotation using CellTypist#

model = celltypist.models.Model.load(model="Immune_All_Low.pkl")
Hide code cell output
2024-04-10 18:54:05,594:INFO - πŸ”Ž No available models. Downloading...
2024-04-10 18:54:05,595:INFO - πŸ“œ Retrieving model list from server https://celltypist.cog.sanger.ac.uk/models/models.json
2024-04-10 18:54:07,141:INFO - πŸ“š Total models in list: 44
2024-04-10 18:54:07,143:INFO - πŸ“‚ Storing models in /home/runner/.celltypist/data/models
2024-04-10 18:54:07,144:INFO - πŸ’Ύ Downloading model [1/44]: Immune_All_Low.pkl
2024-04-10 18:54:08,836:INFO - πŸ’Ύ Downloading model [2/44]: Immune_All_High.pkl
2024-04-10 18:54:14,607:INFO - πŸ’Ύ Downloading model [3/44]: Adult_CynomolgusMacaque_Hippocampus.pkl
2024-04-10 18:54:20,194:INFO - πŸ’Ύ Downloading model [4/44]: Adult_Human_PancreaticIslet.pkl
2024-04-10 18:54:25,460:INFO - πŸ’Ύ Downloading model [5/44]: Adult_Human_Skin.pkl
2024-04-10 18:54:26,845:INFO - πŸ’Ύ Downloading model [6/44]: Adult_Mouse_Gut.pkl
2024-04-10 18:54:28,552:INFO - πŸ’Ύ Downloading model [7/44]: Adult_Mouse_OlfactoryBulb.pkl
2024-04-10 18:54:29,929:INFO - πŸ’Ύ Downloading model [8/44]: Adult_Pig_Hippocampus.pkl
2024-04-10 18:54:36,015:INFO - πŸ’Ύ Downloading model [9/44]: Adult_RhesusMacaque_Hippocampus.pkl
2024-04-10 18:54:42,106:INFO - πŸ’Ύ Downloading model [10/44]: Autopsy_COVID19_Lung.pkl
2024-04-10 18:54:43,497:INFO - πŸ’Ύ Downloading model [11/44]: COVID19_HumanChallenge_Blood.pkl
2024-04-10 18:54:44,886:INFO - πŸ’Ύ Downloading model [12/44]: COVID19_Immune_Landscape.pkl
2024-04-10 18:54:46,116:INFO - πŸ’Ύ Downloading model [13/44]: Cells_Fetal_Lung.pkl
2024-04-10 18:54:47,835:INFO - πŸ’Ύ Downloading model [14/44]: Cells_Intestinal_Tract.pkl
2024-04-10 18:54:49,517:INFO - πŸ’Ύ Downloading model [15/44]: Cells_Lung_Airway.pkl
2024-04-10 18:54:52,647:INFO - πŸ’Ύ Downloading model [16/44]: Developing_Human_Brain.pkl
2024-04-10 18:54:58,190:INFO - πŸ’Ύ Downloading model [17/44]: Developing_Human_Gonads.pkl
2024-04-10 18:55:00,156:INFO - πŸ’Ύ Downloading model [18/44]: Developing_Human_Hippocampus.pkl
2024-04-10 18:55:07,251:INFO - πŸ’Ύ Downloading model [19/44]: Developing_Human_Organs.pkl
2024-04-10 18:55:08,644:INFO - πŸ’Ύ Downloading model [20/44]: Developing_Human_Thymus.pkl
2024-04-10 18:55:15,013:INFO - πŸ’Ύ Downloading model [21/44]: Developing_Mouse_Brain.pkl
2024-04-10 18:55:27,725:INFO - πŸ’Ύ Downloading model [22/44]: Developing_Mouse_Hippocampus.pkl
2024-04-10 18:55:28,816:INFO - πŸ’Ύ Downloading model [23/44]: Fetal_Human_AdrenalGlands.pkl
2024-04-10 18:55:30,050:INFO - πŸ’Ύ Downloading model [24/44]: Fetal_Human_Pancreas.pkl
2024-04-10 18:55:31,344:INFO - πŸ’Ύ Downloading model [25/44]: Fetal_Human_Pituitary.pkl
2024-04-10 18:55:32,572:INFO - πŸ’Ύ Downloading model [26/44]: Fetal_Human_Retina.pkl
2024-04-10 18:55:34,091:INFO - πŸ’Ύ Downloading model [27/44]: Fetal_Human_Skin.pkl
2024-04-10 18:55:35,771:INFO - πŸ’Ύ Downloading model [28/44]: Healthy_Adult_Heart.pkl
2024-04-10 18:55:39,056:INFO - πŸ’Ύ Downloading model [29/44]: Healthy_COVID19_PBMC.pkl
2024-04-10 18:55:41,609:INFO - πŸ’Ύ Downloading model [30/44]: Healthy_Human_Liver.pkl
2024-04-10 18:55:42,837:INFO - πŸ’Ύ Downloading model [31/44]: Healthy_Mouse_Liver.pkl
2024-04-10 18:55:45,742:INFO - πŸ’Ύ Downloading model [32/44]: Human_AdultAged_Hippocampus.pkl
2024-04-10 18:55:46,983:INFO - πŸ’Ύ Downloading model [33/44]: Human_Developmental_Retina.pkl
2024-04-10 18:55:48,076:INFO - πŸ’Ύ Downloading model [34/44]: Human_Embryonic_YolkSac.pkl
2024-04-10 18:55:49,456:INFO - πŸ’Ύ Downloading model [35/44]: Human_IPF_Lung.pkl
2024-04-10 18:55:55,171:INFO - πŸ’Ύ Downloading model [36/44]: Human_Longitudinal_Hippocampus.pkl
2024-04-10 18:55:57,914:INFO - πŸ’Ύ Downloading model [37/44]: Human_Lung_Atlas.pkl
2024-04-10 18:55:59,306:INFO - πŸ’Ύ Downloading model [38/44]: Human_PF_Lung.pkl
2024-04-10 18:56:00,548:INFO - πŸ’Ύ Downloading model [39/44]: Lethal_COVID19_Lung.pkl
2024-04-10 18:56:01,785:INFO - πŸ’Ύ Downloading model [40/44]: Mouse_Dentate_Gyrus.pkl
2024-04-10 18:56:05,524:INFO - πŸ’Ύ Downloading model [41/44]: Mouse_Isocortex_Hippocampus.pkl
2024-04-10 18:56:06,757:INFO - πŸ’Ύ Downloading model [42/44]: Mouse_Postnatal_DentateGyrus.pkl
2024-04-10 18:56:09,457:INFO - πŸ’Ύ Downloading model [43/44]: Nuclei_Lung_Airway.pkl
2024-04-10 18:56:10,989:INFO - πŸ’Ύ Downloading model [44/44]: Pan_Fetal_Human.pkl
predictions = celltypist.annotate(
    adata, model="Immune_All_Low.pkl", majority_voting=True
)
adata.obs["cell_type_celltypist"] = predictions.predicted_labels.majority_voting
2024-04-10 18:56:12,680:INFO - πŸ”¬ Input data has 13999 cells and 9943 genes
2024-04-10 18:56:12,681:INFO - πŸ”— Matching reference genes in the model
2024-04-10 18:56:13,810:INFO - 🧬 3700 features used for prediction
2024-04-10 18:56:13,815:INFO - βš–οΈ Scaling input data
2024-04-10 18:56:14,299:INFO - πŸ–‹οΈ Predicting labels
2024-04-10 18:56:14,506:INFO - βœ… Prediction done!
2024-04-10 18:56:14,509:INFO - πŸ‘€ Detected a neighborhood graph in the input object, will run over-clustering on the basis of it
2024-04-10 18:56:14,510:INFO - ⛓️ Over-clustering input data with resolution set to 10
2024-04-10 18:56:21,555:INFO - πŸ—³οΈ Majority voting the predictions
2024-04-10 18:56:21,609:INFO - βœ… Majority voting done!
bt.CellType.inspect(adata.obs["cell_type_celltypist"]);
❗ received 14 unique terms, 13985 empty/duplicated terms are ignored
❗ 14 terms (100.00%) are not validated for name: Intermediate macrophages, B cells, Tcm/Naive helper T cells, Tem/Effector helper T cells, Tem/Trm cytotoxic T cells, Non-classical monocytes, Regulatory T cells, NK cells, Tcm/Naive cytotoxic T cells, pDC, CD16+ NK cells, DC2, Classical monocytes, DC
   detected 2 CellType terms in Bionty as synonyms: 'pDC', 'DC2'
β†’  add records from Bionty to your CellType registry via .from_values()
   couldn't validate 14 terms: 'Classical monocytes', 'Regulatory T cells', 'DC', 'Tem/Effector helper T cells', 'B cells', 'Tcm/Naive helper T cells', 'Tem/Trm cytotoxic T cells', 'Intermediate macrophages', 'NK cells', 'pDC', 'CD16+ NK cells', 'DC2', 'Non-classical monocytes', 'Tcm/Naive cytotoxic T cells'
β†’  if you are sure, create new records via ln.CellType() and save to your registry
adata.obs["cell_type_celltypist"] = bt.CellType.standardize(
    adata.obs["cell_type_celltypist"]
)
❗ found 2 synonyms in Bionty: ['pDC', 'DC2']
   please add corresponding CellType records via `.from_values(['plasmacytoid dendritic cell'])`
# Register cell type of found synonym
bt.CellType.from_public(name='plasmacytoid dendritic cell').save()
❗ now recursing through parents: this only happens once, but is much slower than bulk saving
sc.pl.umap(
    adata,
    color=["cell_type_celltypist", "stim"],
    frameon=False,
    legend_fontsize=10,
    wspace=0.4,
)
... storing 'cell_type_celltypist' as categorical
_images/2d596392a4833b567cd6cbcf391d395764949b382fbb2487375f1a65c311a94c.png

Analysis: Pathway enrichment analysis using Enrichr#

This analysis is based on the GSEApy scRNA-seq Example.

First, we compute differentially expressed genes using a Wilcoxon test between stimulated and control cells.

# compute differentially expressed genes
sc.tl.rank_genes_groups(
    adata,
    groupby="stim",
    use_raw=False,
    method="wilcoxon",
    groups=["STIM"],
    reference="CTRL",
)

rank_genes_groups_df = sc.get.rank_genes_groups_df(adata, "STIM")
rank_genes_groups_df.head()
names scores logfoldchanges pvals pvals_adj
0 ISG15 99.454758 7.132487 0.0 0.0
1 ISG20 96.735313 5.074157 0.0 0.0
2 IFI6 94.970688 5.828440 0.0 0.0
3 IFIT3 92.481796 7.432136 0.0 0.0
4 IFIT1 90.698654 8.053383 0.0 0.0

Next, we filter out up/down-regulated differentially expressed gene sets:

degs_up = rank_genes_groups_df[
    (rank_genes_groups_df["logfoldchanges"] > 0)
    & (rank_genes_groups_df["pvals_adj"] < 0.05)
]
degs_dw = rank_genes_groups_df[
    (rank_genes_groups_df["logfoldchanges"] < 0)
    & (rank_genes_groups_df["pvals_adj"] < 0.05)
]

degs_up.shape, degs_dw.shape
((542, 5), (937, 5))

Run pathway enrichment analysis on DEGs and plot top 10 pathways:

enr_up = gp.enrichr(degs_up.names, gene_sets="GO_Biological_Process_2023").res2d
gp.dotplot(enr_up, figsize=(2, 3), title="Up", cmap=plt.cm.autumn_r);
_images/3a26b696e6111cabf14e9bd245b8d8ea4d22a44a12359e7ff7ba8245017c0ce9.png
enr_dw = gp.enrichr(degs_dw.names, gene_sets="GO_Biological_Process_2023").res2d
gp.dotplot(enr_dw, figsize=(2, 3), title="Down", cmap=plt.cm.winter_r);
_images/e6ad4f33d51f38b46a6925021611af53dcf3ef21b8d8b6ddf4b2a77a69d875ac.png

Register analyzed dataset and annotate with metadata#

Register new features and labels (check out more details here):

new_features = ln.Feature.from_df(adata.obs)
ln.save(new_features)
new_labels = [ln.ULabel(name=i) for i in adata.obs["stim"].unique()]
ln.save(new_labels)
features = ln.Feature.lookup()

Register dataset using a Artifact object:

artifact = ln.Artifact.from_anndata(
    adata,
    description="seurat_ifnb_activated_Bcells",
)
artifact.save()
artifact.features.add_from_anndata(
    var_field=bt.Gene.symbol,
    organism="human", # optionally, globally set organism via bt.settings.organism = "human"
)

Querying metadata#

artifact.describe()
Artifact(uid='lrVPHbPWRvqwzqWiTD5P', suffix='.h5ad', accessor='AnnData', description='seurat_ifnb_activated_Bcells', size=215035593, hash='83ZheE86lWYBwSIevXsmOA', hash_type='sha1-fl', visibility=1, key_is_virtual=True, updated_at=2024-04-10 18:56:49 UTC)

Provenance:
  πŸ“Ž storage: Storage(uid='O9llRSii', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/use-cases-registries', type='local', updated_at=2024-04-10 18:51:55 UTC, created_by_id=1)
  πŸ“Ž transform: Transform(uid='hsPU1OENv0LS6K79', name='Standardize metadata on-the-fly', key='analysis-registries', version='0', type='notebook', updated_at=2024-04-10 18:52:48 UTC, created_by_id=1)
  πŸ“Ž run: Run(uid='cxyKBkXn8kOnYoJJwiwa', started_at=2024-04-10 18:52:48 UTC, is_consecutive=True, transform_id=1, created_by_id=1)
  πŸ“Ž created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-04-10 18:51:55 UTC)
Features:
  var: FeatureSet(uid='qL1GAjnGx9pfuf6sOEno', n=11285, type='number', registry='bionty.Gene', hash='AX1os6YP-nBXp1xo-aws', updated_at=2024-04-10 18:56:49 UTC, created_by_id=1)
    'HMGN1', 'KLC2', 'ARFGAP3', 'TUFT1', 'BIRC2', 'DNHD1', 'TCF4', 'NANOS1', 'GALNT2', 'IKBKG', 'CAV1', 'ERI1', 'ERI1', 'ZCWPW1', 'TUBB4B', 'SMG9', 'TBC1D24', 'HYKK', 'TMEM176B', 'TMEM129', ...
  obs: FeatureSet(uid='Eq3oI4YaRCsiNwj61Mki', n=2, registry='core.Feature', hash='MqfOqviP23fFRctL36pO', updated_at=2024-04-10 18:56:49 UTC, created_by_id=1)
    πŸ”— stim (2, core.ULabel): 'STIM', 'CTRL'
    πŸ”— cell_type_celltypist (1, bionty.CellType): 'plasmacytoid dendritic cell'
  STIM-up-DEGs: FeatureSet(uid='CfJJl81w0HAHtckR1Kfs', name='Up-regulated DEGs STIM vs CTRL', n=661, type='category', registry='bionty.Gene', hash='A3HFmrSx-_j2sO87CWI1', updated_at=2024-04-10 18:56:51 UTC, created_by_id=1)
    'MSL3', 'CREG1', 'TXN', 'AZI2', 'TCF4', 'CHORDC1', 'CHORDC1', 'PRDX4', 'CAPN2', 'GBP7', 'ASCL2', 'LMO2', 'CNP', 'SNX3', 'SLFN12', 'IRF1', 'ADTRP', 'NFE2L2', 'GSDMD', 'GSDMD', ...
  STIM-down-DEGs: FeatureSet(uid='Hrr5RUMoocVEwtQdMJdk', name='Down-regulated DEGs STIM vs CTRL', n=1094, type='category', registry='bionty.Gene', hash='QJZDfaDNXx_R8FNtqou-', updated_at=2024-04-10 18:56:51 UTC, created_by_id=1)
    'HMGN1', 'RSL1D1', 'RNPEP', 'VAMP2', 'TNFRSF18', 'LAMTOR1', 'MAP2K3', 'ATP5PO', 'LGALS1', 'FCGR3A', 'IVNS1ABP', 'EMP3', 'LSM4', 'SNRNP40', 'U2AF1', 'SPHK1', 'PSMD8', 'VKORC1', 'PID1', 'STMP1', ...
Labels:
  πŸ“Ž cell_types (1, bionty.CellType): 'plasmacytoid dendritic cell'
  πŸ“Ž ulabels (2, core.ULabel): 'STIM', 'CTRL'

Querying cell types#

Querying for cell types contains β€œB cell” in the name:

bt.CellType.filter(name__contains="B cell").df().head()
uid name ontology_id abbr synonyms description created_at updated_at public_source_id created_by_id
id

Querying for all artifacts annotated with a cell type:

celltypes = bt.CellType.lookup()
celltypes.plasmacytoid_dendritic_cell
Private registry
Entity: CellType
πŸ“– .df(): reference table
πŸ”Ž .lookup(): autocompletion of terms
🎯 .search(): free text search of terms
βœ… .validate(): strictly validate values
🧐 .inspect(): full inspection of values
πŸ‘½ .standardize(): convert to standardized names
ln.Artifact.filter(cell_types=celltypes.plasmacytoid_dendritic_cell).df()
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
1 lrVPHbPWRvqwzqWiTD5P 1 None .h5ad AnnData seurat_ifnb_activated_Bcells None 215035593 83ZheE86lWYBwSIevXsmOA sha1-fl None None 1 1 1 True 2024-04-10 18:56:48.342518+00:00 2024-04-10 18:56:49.871681+00:00 1

Querying pathways#

Querying for pathways contains β€œinterferon-beta” in the name:

bt.Pathway.filter(name__contains="interferon-beta").df()
uid name ontology_id abbr synonyms description public_source_id created_at updated_at created_by_id
id
684 1l4z0v8W cellular response to interferon-beta GO:0035458 None cellular response to fibroblast interferon|cel... Any Process That Results In A Change In State ... 48 2024-04-10 18:52:11.968133+00:00 2024-04-10 18:52:11.968142+00:00 1
2130 1NzHDJDi negative regulation of interferon-beta production GO:0032688 None down regulation of interferon-beta production|... Any Process That Stops, Prevents, Or Reduces T... 48 2024-04-10 18:52:12.119126+00:00 2024-04-10 18:52:12.119135+00:00 1
3127 3x0xmK1y positive regulation of interferon-beta production GO:0032728 None positive regulation of IFN-beta production|up-... Any Process That Activates Or Increases The Fr... 48 2024-04-10 18:52:12.223766+00:00 2024-04-10 18:52:12.223774+00:00 1
4334 54R2a0el regulation of interferon-beta production GO:0032648 None regulation of IFN-beta production Any Process That Modulates The Frequency, Rate... 48 2024-04-10 18:52:12.349553+00:00 2024-04-10 18:52:12.349563+00:00 1
4953 3VZq4dMe response to interferon-beta GO:0035456 None response to fiblaferon|response to fibroblast ... Any Process That Results In A Change In State ... 48 2024-04-10 18:52:12.532216+00:00 2024-04-10 18:52:12.532226+00:00 1

Query pathways from a gene:

bt.Pathway.filter(genes__symbol="KIR2DL1").df()
uid name ontology_id abbr synonyms description public_source_id created_at updated_at created_by_id
id
1346 7S7qlEkG immune response-inhibiting cell surface recept... GO:0002767 None immune response-inhibiting cell surface recept... The Series Of Molecular Signals Initiated By A... 48 2024-04-10 18:52:12.036629+00:00 2024-04-10 18:52:12.036638+00:00 1

Query artifacts from a pathway:

ln.Artifact.filter(feature_sets__pathways__name__icontains="interferon-beta").first()
Artifact(uid='lrVPHbPWRvqwzqWiTD5P', suffix='.h5ad', accessor='AnnData', description='seurat_ifnb_activated_Bcells', size=215035593, hash='83ZheE86lWYBwSIevXsmOA', hash_type='sha1-fl', visibility=1, key_is_virtual=True, updated_at=2024-04-10 18:56:49 UTC, storage_id=1, transform_id=1, run_id=1, created_by_id=1)

Query featuresets from a pathway to learn from which geneset this pathway was computed:

pathway = bt.Pathway.filter(ontology_id="GO:0035456").one()
pathway
Private registry
Entity: Pathway
πŸ“– .df(): reference table
πŸ”Ž .lookup(): autocompletion of terms
🎯 .search(): free text search of terms
βœ… .validate(): strictly validate values
🧐 .inspect(): full inspection of values
πŸ‘½ .standardize(): convert to standardized names
degs = ln.FeatureSet.filter(pathways__ontology_id=pathway.ontology_id).one()

Now we can get the list of genes that are differentially expressed and belong to this pathway:

contributing_genes = pathway.genes.all() & degs.genes.all()
contributing_genes.list("symbol")
['IFITM2',
 'IFITM3',
 'IFI16',
 'CALM1',
 'PNPT1',
 'IRF1',
 'AIM2',
 'BST2',
 'SHFL',
 'STAT1',
 'XAF1',
 'IFITM1',
 'OAS1',
 'PLSCR1',
 'MNDA']
# clean up test instance
!lamin delete --force use-cases-registries
!rm -r ./use-cases-registries
Hide code cell output
πŸ’‘ deleting instance testuser1/use-cases-registries
❗ manually delete your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/use-cases-registries